A Spherical Potassium-Capped Vanadium Methylphosphonate as Another ϵ -Keggin Fragment, $[H_6KV_{12}O_{27}(VO_4)(PO_3CH_3)_3]^{5-}$

Toshihiro Yamase*, Haruyo Makino, Haruo Naruke, and Ana Maria San José Wéry Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

(Received September 5, 2000; CL-000832)

An $[H_3KV_{12}O_{27}(AsO_4)_4]^{6-}$ -isostructural ε -Keggin fragment anion, $[H_6KV_{12}O_{27}(VO_4)(PO_3CH_3)_3]^{5-}$, was photochemically prepared. This K⁺-capped anion is formally built of nine V^{IV}O₆ octahedra, three PO₃C tetrahedra, and four V^VO₄ tetrahedra, one of the latter being a central VO₄³⁻ group. The capping K⁺ cation lies on the C_3 axis and links two adjacent anion, to form a linear chain of the anions along c-axis.

An ε -Keggin fragment complex capped by a K⁺ cation, K₆[H₃KV^{IV}₄VV₈O₂₇(AsO₄)₄]·8H₂O, has been prepared by reduction of an aqueous solution of vanadate(V) with thiocyanate in the presence of As^{5+,1} The [H₃KV^{IV}₄VV₈O₂₇(AsO₄)₄]⁶⁻ anion is formally built up by nine VO₆ octahedra and four AsO₄ tetrahedra to form the spherical chiral ε -Keggin fragment (with replacement of C_3 -occupying three VO₆ octahedra by AsO₄ tetrahedra) which is stabilized by capping K⁺ and by three VO₄ tetrahedra, as shown in Figure 1 where four vanadium(IV) centers in the anion have been characterized to be localized on three filled circles as localized V^{IV} sites and fourth V^{IV} as delocalized over three hatched circles.² The valence bond summations suggest that the terminal O atoms in each of the three C_3 -occupying AsO₄ groups are protonated.

Figure 1. Structure of $[H_3KV_{12}As_3O_{39}(AsO_4)]^{6-}$.

We found that an isostructural vanadium methylphosphonate (with different V^{IV}/V^V mixed-valency) is formed as $K_5[H_6KV^{IV}{}_9V^V{}_3O_{27}(V^VO_4)(PO_3CH_3)_3]\cdot 16.5H_2O$ (1), when a source of methylphosphonate ($[PO_3CH_3]^{2-}$) anion replaces arsenate in the reduction processes. It is notable that the family of the above ε -Keggin fragments is commonly stabilized by a capping potassium cation and by additional three VO_4 tetrahedra. The present paper describes the photochemical synthesis and crystal structure of 1 as another high-nuclearity species of the K⁺-capped ε -Keggin fragment.

1 was prepared according to the modification of our previous method:³ solids of $[Bu^tNH_3]_4[V_4O_{12}]^4$ (0.45 g), $CH_3PO_3H_2$ (0.27 g), and $C_6H_5PO_3H_2$ (0.50 g) were stirred in a water (18

mL)/CH₃OH (2 mL) solution, and the yellow solution (pH \approx 1.9) was adjusted to pH = 5.1 by KOH. The resulting dark-yellow solution was moved into a Pyrex tube (volume: 20 mL) and UV-irradiated by a 500 W super-high-pressure mercury lamp without filter for 6 days. Brown prismatic solids of 1 were obtained (yield: 56 % based on V). Found: H, 2.42; C, 2.09; P, 5.1; K, 12.2; V, 34 %. Calcd for H₄₈C₃O_{56.5}P₃K₆V₁₃: H, 2.45; C, 1.82; P, 4.70; K, 11.86; V, 33.48 %. Potentiometric redox titrations with KMnO₄ showed that the V^{IV}:V^V ratio is \approx 9:4. IR spectrum of **1** (Figure 2) ($v \text{ [cm}^{-1}\text{]} = 2925$, v(C-H); 1310, v(P-C); 1094 and 1050, v(P-O); 1011, v(P-O or V=O); 967, v(V=O); 819 and 701, v(V–O–V)) displays a characteristic pattern of metal methylphosphonates.^{5,6} Since the absence of $C_6H_5PO_3H_2$ brought about no formation of 1, $C_6H_5PO_3H_2$ seemed to be essential for the photochemical preparation of 1, probably as both additional reductant and buffer. The photochemical formation of the discrete anion $[H_6KV_{12}O_{27}(VO_4)(PO_3CH_3)_3]^{5-}$ in the $C_6H_5PO_3H_2/CH_3PO_3H_2$ mixed system is in contrast to the hydrothermal synthesis in the V2O3/C6H5PO3H2/CH3PO3H2 system which gave a layered vanadium phosphonate, VO(C₆H₅PO₃)_{1-v}(CH₃PO₃)_v·1.5H₂O (y=0.5, 0.75)⁷

Figure 3 shows the structure of anion of 1,⁸ which can be derived formally from $[H_3KV_{12}As_3O_{39}(AsO_4)]^{6-}$ (Figure 1) by replacing three peripheral four-coordinate As–OH groups by P–CH₃ groups and a central tetrahedrally coordinated As atom by V atom. The bond valence sum (BVS) calculations⁹ suggest that nine and four V atoms for VO₆ octahedra (BVS = 3.9–4.0) and VO₄ tetrahedra (4.9–5.0) are V^{IV} and V^V, respectively, being in agreement with the result (V^{IV}:V^V = 9:4) of the manganometric titration.¹⁰ Furthermore, BVS values for O7 (1.1) and O9 (1.1) atoms suggest that six μ_2 -O atoms of O7, O7ⁱ, O7ⁱⁱ, O9, O9ⁱ, and O9ⁱⁱ are protonated.

Temperature dependence of the product of χT for **1** is shown in Figure 4 where χ is the molecular magnetic susceptibility and T the temperature.¹¹ χT decreases gradually on decreasing temperature, and makes a plateau in the range

Figure 3. Views of $[H_6KV_{12}O_{27}(VO_4)(PO_3CH_3)_3]^{5-}$ anion (a), coordination environment of K1 (b), and linear chain structure of the anions in 1 (c). Leastsquares planes defined by $[O11, O11^i, O11^{ii}, O12, O12^i, O12^{ii}]$ and $[O7^{iii}, O7^{iv}, O7^v]$ are denoted by dashed lines in (b). Symmetry codes: (i) -x+y+1, -x+1, z; (ii) -y+1, x-y, z; (iii) x, y, z-1; (iv) -x+y+1, -x+1, z-1, (v) -y+1, x-y, z-1.

Figure 4. Temperature dependence of χT for 1.

70–150 K. Below 50 K χ T decreases rapidly. The value of χ T in the range 70–150 K, 1.1 emu mol⁻¹ K, is close to the value (1.13 emu mol⁻¹ K) expected for three localized V^{IV} centers, implying V^{IV} centers on the *C*₃-occupying V3, V3ⁱ, and V3ⁱⁱ atoms in V…V distances of 5.610(7) Å as a result of three sets of the antiferromagnetic coupling between V1 and V2 centers in short V…V distance of 2.966(4) Å, compared with the shortest V…V distance 3.281(4) Å between symmetry-related V2 and V3 atoms. The value of χ T at room temperature (1.5 emu mol⁻¹ K)

suggests the presence of five uncoupled V^{IV} centers, probably on three V3 atoms as localized V^{IV} sites and other two V atoms as delocalized over three V1 sites in V…V distance of 3.330(7) Å and V2 sites in 5.986(9) Å for each.

The capping K1 atom is on the C_3 -axis and coordinated by nine oxygen atoms. The six-coordinative oxygens O11 and O12 (in K…O distances of 2.87(1) and 3.16(1) Å respectively) and symmetry-related ones define the plane, and the K1 atom lies 1.430(9) Å above this plane. The seven-to-nineth coordination positions are occupied by terminal O7 atom (in K--O distance of 3.00(1) Å) and its symmetry-related ones which belong to a neighboring anion, to form a linear chain of the anions along the *c*-axis (Figure 3(c)). This is in strong contrast to the case of $K_6[H_3KV^{IV}_4V^8_8O_{27}(AsO_4)_4]\cdot 8H_2O$ which showed a zigzag chain arrangement of linked anions due to different four oxygens O1, O2, O6, and O4ⁱ atoms in a neighboring anion.¹ The above K1 atom is coordinated by all the nine O atoms belonging to the anions. On the other hand, K2 atom is coordinated by two crystal water molecules and five anion-O atoms with K...O distances of 2.67(1)–3.25(1) Å, and bridge the two symmetry-related anions. Similarly, K3 atom is coordinated by three crystal water molecules and four O atoms belonging to the same anion with K…O distances of 2.69(5)–3.11(1) Å.

One (T.Y.) of us acknowledges Grants-in-Aid for Scientific Research, No. 09354009 and 10304055, from the Ministry of Education, Science, Sports, and Culture and for Research project No. 99P01201 from RFTF/JSPS for support of this work.

References and Notes

- 1 A. Müller, M. Penk, and J. Döring, *Inorg. Chem.*, **30**, 4935 (1991).
- 2 A. L. Barra, D. Gatteschi, B. S. Tsukerblatt, J. Döring, A. Müller, and J. -C. Brunel, *Inorg. Chem.*, 31, 5132 (1992).
- T. Yamase and K. Ohtaka, J. Chem. Soc., Dalton Trans., 1994, 2599.
 P. Román, A. San José, A. Luque, and M. Gutiérrez-Zorrilla, Inorg. Chem., 32, 775 (1993).
- 5 W. T. A. Harrison, L. L. Dussack, and A. J. Jacobson, *Inorg. Chem.*, 35, 1461 (1996).
- 6 W. T. A. Harrison, L. L. Bussack, and A. J. Jacobson, *Inorg. Chem.*, 34, 4774 (1995).
- 7 G. Huan, A. J. Jacobson, J. W. Johnson, and D. P. Goshorn, *Chem. Mater.*, 4, 661 (1992).
- 8 A single crystal of **1** with $0.32 \times 0.12 \times 0.09$ mm coated with an epoxy resin was sealed in a glass capillary and mounted on Rigaku AFC-5S four-circle diffractometer with monochromatized Mo K α ($\lambda = 0.71069$ Å) radiation. Crystal data: H₄₈C₃O_{56.5}P₃K₆V₁₃, MW= 1978.13, trigonal, P³ (No. 147), a = 19.063), c = 10.676(5) Å, Z = 2, $D_c = 1.955$ gcm⁻³, F(000)= 1952, μ (Mo K α)= 2.263 mm⁻¹. Of the 16980 total reflections, 12381 were unique. Structure was solved by SHELXS86 and refined based on 2777 observed reflections with I > 3 σ (I) and 157 variables. Absorption correction DIFABS was applied with transmission factors from 0.417 to 0.816. The final discrepancy factors were $R_1 = 0.092$ and $wR_2 = 0.097$. C, P, K, and V atoms were refined anisotropically. Since the refinement of K3 and O16 with full occupancy resulted in large thermal parameters (\approx 13 and 44 Å², respectively), their site occupancies were fixed at 2/3 and 1/2, respectively.
- 9 I. D. Brown, "Structure and Bonding in Crystals," ed. by M. O'Keeffe and A. Navrotsky, Academic Press, New York, U.S.A. (1980), Vol. II, pp. 1–30.
- II, pp. 1–30. 10 The ⁵¹V NMR spectrum of **1** was measured in D₂O solution (0.07M) on a 300-MHz spectrometer (JEOL AL300) at 298 K (standard: NaVO₃), and showed two broad bands at –644.0 ppm ($v_{1/2}$ = 995 Hz) and –660.3 ppm ($v_{1/2}$ = 885 Hz) with an 1.00:0.27 intensity ratio, probably due to V^V sites in the three capping and one central VO₄ tetrahedra. The integrated intensities of the two resonance bands were estimated by a curve fitting technique due to their overlapping.
- 11 The magnetic susceptibility in the range 4–300 K was measured under the magnetic field of 1.0 T with a Quantum Design, MPMS-5S SQUID Magnetometer. The experimental data were corrected for diamagnetic contributions using standard Pascal constants.